Methods for Spatial Prediction of Crop Yield Potential

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuro-fuzzy Modeling for Crop Yield Prediction

The purpose of this paper is to explore the dynamics of neural networks in forecasting crop (wheat) yield using remote sensing and other data. We use the Adaptive Neuro-Fuzzy Inference System (ANFIS). The input to ANFIS are several parameters derived from the crop growth simulation model (CGMS) including soil moisture content, above ground biomass, and storage organs biomass. In addition we use...

متن کامل

Modified Naïve Bayes Based Prediction Modeling for Crop Yield Prediction

Most of greenhouse growers desire a determined amount of yields in order to accurately meet market requirements. The purpose of this paper is to model a simple but often satisfactory supervised classification method. The original naive Bayes have a serious weakness, which is producing redundant predictors. In this paper, utilized regularization technique was used to obtain a computationally eff...

متن کامل

An Intelligent System Based on Kernel Methods for Crop Yield Prediction

This paper presents work on developing a software system for predicting crop yield from climate and plantation data. At the core of this system is a method for unsupervised partitioning of data for finding spatio-temporal patterns in climate data using kernel methods which offer strength to deal with complex data. For this purpose, a robust weighted kernel k-means algorithm incorporating spatia...

متن کامل

Comparison of missing value imputation methods for crop yield data

Most ecological data sets contain missing values, a fact which can cause problems in the analysis and limit the utility of resulting inference. However, ecological data also tend to be spatially correlated, which can aid in estimating and imputing missing values. We compared four existing methods of estimating missing values: regression, kernel smoothing, universal kriging, and multiple imputat...

متن کامل

Adaptive Neuro-Fuzzy Modeling For Crop Yield Prediction

Most of greenhouse growers desire a determined amount of yields in order to accurately meet market requirements. The purpose of this paper is to explore the dynamics of neural networks in forecasting crop (tomato) yield using environmental variables; here we aim at giving accurate yield amount. We use the Adaptive Neuro-Fuzzy Inference System (ANFIS). The input to ANFIS is several parameters de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Agronomy Journal

سال: 2018

ISSN: 0002-1962,1435-0645

DOI: 10.2134/agronj2017.11.0664